
© 2008 Quest Software, Inc. ALL RIGHTS RESERVED.

A New View on Application Management

www.quest.com/newview

Monitoring applications in multitier
environment

Uroš Majcen
uros@quest-slo.com

http://www.quest.com/newview

October 31, 2009

Management Challenges

End User

Client Admin

LAN
Admin

Firewall
admin

Server admin

ERP Admin Sys admin Application
Admin

VMware
admin

Domain
admin

The server
is working

OK

No other
complaints

All lights
Are green

We don’t
see anything

wrong

Database
Admin

Hey, this is
not working

VMs are lightly
loaded

Everything
Is OK

Not our
problem

Looks
fine Not mine

either

Talk to
the other

guys

Siloed organizations result in the “It’s not me!” syndrome

Who will own the issues?

Monitoring Silos Doesn’t Work

FIREWALL WEB SERVER

USER

Suppose the database server is 50% slower than normal

APP SERVER DB SERVER

Login

Register

Br
ow

se

A problem in one application can affect all the other
applications involved in the service delivery.

Monitoring Silos Doesn’t Work

Disk reads

Media StreDatabase Queries aming

Excessive disk reads by the media server slow down Oracle database accesses

Multi-tier infrastructures are difficult to manage

Adding VMs to the mix makes the problem even harder!!!

.

Holistic View of Performance
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Web Server

JEE Server

Directory

Database

Network

OS

Availability

99%

99%

99.99%

99%

99.999%

99.9%

End User 75%

Available
Unavailable

Applications using Java
Technologies

Application Performance Issues

• Slow and slower response times
• Slower under heavy load
• Sporadic Hangs and aberrant errors
• System Locks up
• Sudden Chaos/Unexpected errors

Diagnostic Challenges: Lack of
Visibility is Source of Problem

Challenges in Diagnosing

• Highly distributed
systems

• Cross Tier - J2EE, DB,
SOA
– How does DB configuration

affect application
performance?

– How to correlate SQLs to
Java sessions?

• Was AS tuned
properly?

• No visibility into runtime
environment
– What error customer saw

on screen?
– Which part of the code is

taking time?
– Which application server

instance is causing a
problem?

– Was the problem in J2EE
or DB Layer?

Application Diseases

• Java memory leak
issues
– Linear
– exponential

• Bad Coding
– Infinite loops
– Exception handling

• Resource Leak

• Thread deadlock
• Incorrect Application

Server Configuration
– Pools, caches
– memory

• External Issues
– JDBC/DB Issues
– Messaging Provider

Approaches to Application Diagnostics

• Monitoring Metrics
– Application, J2EE Servers, DB and Machine resources

• Find top SQL from DB monitoring and find out
• application code responsible
• Rerun Use case in test environment
• Use JVM diagnostic tools in test environment
• Use logs

Challenges In these approaches

• Logs don’t have sufficient data
• Correlating logs across multiple application server

instances and other tiers is very painful; impossible in
some cases

• Test environment can’t reproduce the exact scenario
- load, resources contention, etc

• The actual execution context is lost forever

Challenges In these approaches

• Challenge in finding offending SQL Code in modern
app using JPA or O-R Framework (TopLink,
Hibernate)

• No cross tier correlation of application code
• with DB tier
• How to correlate metrics from various sources

Monitor in production and diagnose in test/development
environment

Application Problems and Possible
Causes

Diagnose Application Server Issues

• Monitor Application
Server resources and
search for bottlenecks
– Thread pools / Work

managers
– Resource usage (JMS,

Data Sources)
– Applications (EJB Pools,

bad JSPs/Servlets)

• Look for possible errors
in Logs
– Time outs
– Exceptions
– Memory issues

• Use tools to proactively
monitor using
alert/event notifications

Application Code Issues: Using Diagnostics
Tools

• JMX based
• Byte Code Instrumentation / AOP
• JMVTI

JMX Based Monitoring

• Monitoring tools JMX data exposed by the application
server and/or applications

• Get some high level metrics such as Response Time,
Load, Open Connections, EJB Count, etc

• Alerts on threshold can give some indicators
• Limitations

– No insight into code
– Can not correlate user requests with mid tier metrics

Byte Code Instrumentation

• Find out code traces
• Can correlate user requests to code stack
• Find out code bottlenecks
• Limitations

– Need server restart or application redeployment
– Either instrument every thing or know what to instrument
– Over instrumentation will be have overheads
– Functional instrumentation is difficult and is impossible for

admins

BCI Tools

• Aggregate of traces
• Segregation by layers in J2EE
• Some provide remoting support
• Capture each trace
• Some products

– ClearApp
– Dynatrace
– CA Wily
– Some parts of Quest Foglight

JVM Native Diagnostics

• JVM specific agent running within JVM
• Take snapshots of JVM threads and heap
• DB agent makes corellation with J2EE stack
• possible
• Advantages

– Extremely low overheads (< 1%)
– No byte code changes
– No server restarts or application redeployments
– Perfect for production scenarios

Also used in Quest Foglight

22

Additonal Approach or Add to BCI and JVMTI
is End-User Performance Management
(EUPM)

Definition:

The ability to proactively manage the performance and
availability of enterprise applications including Web,
Legacy, Client Server ,Citrix and Virtualization
applications from the perspective of the end-user.

23

What is end-user performance?

Application
server Database

User/client Web server

• It is these folks who determine the application’s value
• It is these folks who complain when something goes wrong

Even when there are no problems in the Application IT Infrastructure!!
… so let’s measure application success based on how the end-users are served

24

Complementary Approaches for End User Experience
Monitoring (Active vs. Passive)

Synthetic Transactions
• Record and playback same

transactions at regular intervals
and monitor the response times

• Less variability is good for
repetitive monitoring
– Consistent locations
– Consistent connectivity
– Consistent browser type
– Consistent paths

• Great for predictive/proactive
monitoring (especially after a
change)

• Great for availability monitoring
and reporting

Passive User Monitoring
• Monitor all the activity of the

application users continuously

• Covers all cases not covered by
proactive monitoring
– All users
– All connectivity types
– All browsers
– All paths

• Great for service level monitoring
• Great for identifying slowest & most

common user interactions
• Details traffic volume, network

performance, server utilization, and
backend time on user experience

25

How is the application performing
for a ‘standard’ end-user?

Application
server Database

User/client Web server

Artificial user
Performing and timing
Standard artificial (“synthetic”) transactions

Focus: how long does the transaction take?

26

Monitoring of real end-users

Application
server Database

User/client Web server

Focus: how are my actual users doing?

Normally concerned with diagnosing and resolving
problems with individual transactions

Ideal solution should provide

• Provide a 24x7 Holistic View of the service delivery chain
operation from the End Users perspective

• Quick identification of where the performance bottleneck
lies within the service delivery chain

• Real-time alerts based on actual user activity
– Ideally compare against historical baseline

Ideal solution (continued)

• Minimal impact on existing infrastructure
– During peak periods, infrastructure is often pushed to its limits,

additional management traffic burden can adversely impact end
user experience

• Easy to Deploy, Easy to Use
– Limited IT resources
– Ideally drill-down based reporting interface, show high-level reports

first
– Web service delivery chain operation is complex, typically managed

by different groups within the IT department, provide an interface
where each group within the IT department can find relevant
information from their vantage point

Several Approaches to this problem

Several products track “user experience”
including:

Web log analyzers
Content tagging
Synthetic transaction monitoring

Implementation Analysis Limitations

Web Analytic
Tools

Post-process of web
logs
Scheduled log analysis
Spiders a site for

content problems

Page design
Broken links
Usage/Navigation
Estimates end-user

experience

No performance
analysis
No historical

baselines
No alerting

Content
Tagging

Insert a “tag” on each
page to be monitored
Delivers data at the

end of the page during
an image “get”
Processes the web logs

to get mine the data

Captures real-user traffic
(site traffic, usage, and
performance)
Profiles users by browser

type & connection speed
Performance of page and

components
Still predominately web

analytics data

Cannot track errors
No availability

metrics
Cannot identify

specific servers
Cannot distinguish

between server and
backend time

Synthetic
Transactions

Scheduled playback of
recorded transactions
Limited number of

locations, connectivity
options and paths
Must manage scripts

Transaction, page and
component performance
Limited to external view

of performance
Performance by location

and ISP

Limited to recorded
transactions only
No real user analysis
Alerting capabilities

limited to trxn/page
performance & errors

Best Practices

• Use single console to
monitor all system
components

• Choose right JVM
diagnostic tool
– Should not need

restarts/redeployments
– Monitor threads, heap

real time
– Near zero % overheads
– Cross tier

• Capture the actual
HTTP transactions seen
by clients

• Capture traces in real
time and segregate
performance by various
J2EE layers

• Correlate transactions
across JVMs

• Dužina prezentacije je nestandarna za prikazivanje
na web siteu.

• Za pogledati ostatak prezentacije koristite
postkonferencijski DVD.

	Who will own the issues?
	Holistic View of Performance
	Applications using Java�Technologies
	Application Performance Issues
	Diagnostic Challenges: Lack of�Visibility is Source of Problem
	Challenges in Diagnosing
	Application Diseases
	Approaches to Application Diagnostics
	Challenges In these approaches
	Challenges In these approaches
	Application Problems and Possible�Causes
	Diagnose Application Server Issues
	Application Code Issues: Using Diagnostics Tools
	JMX Based Monitoring
	Byte Code Instrumentation
	BCI Tools
	JVM Native Diagnostics
	Additonal Approach or Add to BCI and JVMTI�is End-User Performance Management (EUPM)
	Complementary Approaches for End User Experience Monitoring (Active vs. Passive)
	Ideal solution should provide
	Ideal solution (continued)
	Several Approaches to this problem
	Best Practices

